منابع مشابه
Perfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملThe (non-)existence of perfect codes in Lucas cubes
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
متن کاملPerfect Graphs and the Perfect Graph Theorems
The theory of perfect graphs relates the concept of graph colorings to the concept of cliques. In this paper, we introduce the concept of a perfect graph as well as a number of graph classes that are always perfect. We next introduce both theWeak Perfect Graph Theorem and the Strong Perfect Graph Theorem and provide a proof of the Weak Perfect Graph Theorem. We also demonstrate an application o...
متن کاملAPPROACH TO MEDIAL TIBIAL DEFECT IN TKA THE INFLUENCE OF DEFECT AREA ?
This was Presented in 5th International Congress of Iranian Iranian Society of Knee Surgery, Arthroscopy, and Sports Traumatology (ISKAST), 14-17 Feb 2018- Kish, Iran
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Reviews Chemistry
سال: 2018
ISSN: 2397-3358
DOI: 10.1038/s41570-018-0054-2